Cortical distal nephron Cl(-) transport in volume homeostasis and blood pressure regulation.

نویسندگان

  • Susan M Wall
  • Alan M Weinstein
چکیده

Renal intercalated cells mediate the secretion or absorption of Cl(-) and OH(-)/H(+) equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl(-) absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl(-) transporter(s) are targeted by these diuretics is debated. While epithelial Na(+) channel (ENaC) does not transport Cl(-), it modulates Cl(-) transport probably by generating a lumen-negative voltage, which drives Cl(-) flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl(-) secretion via a type A intercalated cells. During ENaC blockade, Cl(-) is taken up across the basolateral membrane through the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl(-) channel or an electrogenic exchanger). The mechanism of this apical Cl(-) secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl(-) absorption mediated by a Na(+)-dependent Cl(-)/HCO3(-) exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl(-) absorption varies between studies and probably depends on the treatment model employed. Cl(-) absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na(+)-independent Cl(-)/HCO3(-) exchanger pendrin. In the absence of pendrin [Slc26a4((-/-)) or pendrin null mice], aldosterone-stimulated Cl(-) absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3(-). This review summarizes mechanisms of Cl(-) transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of extracellular fluid volume and blood pressure by pendrin.

Na(+) is commonly designed as the culprit of salt-sensitive hypertension but several studies suggest that abnormal Cl(-) transport is in fact the triggering mechanism. This review focuses on the regulation of blood pressure (BP) by pendrin, an apical Cl(-)/HCO(3)(-) exchanger which mediates HCO(3)(-) secretion and transcellular Cl(-) transport in type B intercalated cells (B-ICs) of the distal ...

متن کامل

NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation.

Slc26a4 (Pds, pendrin) is an anion transporter expressed in the apical region of type B and non-A, non-B intercalated cells of the distal nephron. It is upregulated by aldosterone analogues and is critical in the development of mineralocorticoid-induced hypertension. Thus, Slc26a4 expression and its role in blood pressure and fluid and electrolyte homeostasis was explored during NaCl restrictio...

متن کامل

Physiological role of NBCe2 in the regulation of electrolyte transport in the distal nephron.

The electrogenic Na(+)-HCO3 (-) cotransporter 2 (NBCe2) is a newly discovered protein in the distal nephron. Our understanding is minimal regarding its physiological role in renal electrolyte transport. In this mini-review, we summarize the potential function of NBCe2 in the regulation of blood pressure, acid-base, and K(+) and Ca(2+) transport in the distal nephron.

متن کامل

Epithelial Sodium Channel as a Brake on Flow-Mediated Vasodilation

The epithelial sodium channel (ENaC) contributes to blood pressure homeostasis through renal salt and water transport; increases in ENaC activity increase salt and water reabsorption along the distal nephron, increasing extracellular fluid volume and blood pressure. The importance of tubular ENaC in cardiovascular homeostasis is manifested in Liddle’s disease and type I pseudohypoaldosteronism,...

متن کامل

Editorial Commentary The (F)low Down on the Endothelial Epithelial Sodium Channel Epithelial Sodium Channel as a Brake on Flow-Mediated Vasodilation

The epithelial sodium channel (ENaC) contributes to blood pressure homeostasis through renal salt and water transport; increases in ENaC activity increase salt and water reabsorption along the distal nephron, increasing extracellular fluid volume and blood pressure. The importance of tubular ENaC in cardiovascular homeostasis is manifested in Liddle’s disease and type I pseudohypoaldosteronism,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 4  شماره 

صفحات  -

تاریخ انتشار 2013